Chemistry Study Materials for Class 11 (NCERT Based Revision Notes of Chapter- 11)

Ganesh Kumar Date: -23/02/2021

p- block element

Reactivity towards halogens: They react with halogens and form trihalides.

 $2E(s)+3X_2(g) \longrightarrow 2EX_3(s)$

 $2AI(s) + 3CI_2(g) \longrightarrow 2AICI_3(s)$

AICl₃ exists as dimer to attain stability.

Anhydrous aluminium chloride is partially hydrolysed with moisture to liberate fumes of HCl gas. So white fumes appears around the bottle of anhydrous $AICl_3$

Some important compounds of Boron

1. Borax $[Na_2B_4O_7.10H_2O]$: It is a white crystalline solid with formula $Na_2B_4O_7 \ 10H_2O$ (Sodium tetra borate decahydrate). It contains the tetra nuclear units $[B_4O_5(OH)_4]^{2-}$ and hence its correct formula is $Na_2[B_4O_5 \ (OH)_4]$.8H₂O.

It dissolves in water to give NaOH and Orthoboric acid. Since NaOH is a strong alkali and Orthoboric acid is weak acid, the solution is basic in nature.

 $Na_2B_4O_7 + 7H_2O \rightarrow 2NaOH + 4H_3BO_3$

(Orthoboric acid)

On heating, borax first loses water molecules and swells up.

On further heating it turns into a transparent liquid, which solidifies into glass like material known as *borax bead*.

 $Na_{2}B_{4}O_{7}.10H_{2}O \Delta \rightarrow Na_{2}B_{4}O_{7} \Delta \rightarrow 2NaBO_{2} + B_{2}O_{3}$

(Sodium metaborate) (Boric anhydride)

The metaborate of many transition metals have characteristic colours and, therefore, **borax bead test** can be used to identify them in the laboratory.

2. Ortho boric acid [H₃BO₃ or B(OH)₃]: It is a white crystalline solid with soapy touch. It is prepared by acidifying an aqueous solution of borax.

 $Na_2B_4O_7 + 2HCI + 5H_2O \rightarrow 2NaCI + 4H_3BO_3$

It is also obtained by the hydrolysis of boron halides or hydrides.

It is a weak monobasic non-protic acid. It acts as a Lewis acid by accepting electrons from a hydroxyl ion

 $\mathsf{B}(\mathsf{OH})_3 + 2\mathsf{H}_2\mathsf{O} \rightarrow [\mathsf{B}(\mathsf{OH})_4]^- + \mathsf{H}_3\mathsf{O}^+$

On heating above 370K, it forms metaboric acid (HBO₂) which on further heating gives boric oxide (B_2O_3).

 $H_3BO_3 \xrightarrow{} HBO_2 \xrightarrow{} B_2O_3$

Diborane (B₂**H**₆): The simplest boron hydride is borane (BH₃), which exists as a dimer called Diborane (B₂H₆). It is prepared by treating BF₃ with Lithium aluminium hydride (LiAlH₄) in ether.

 $4BF_3 + 3 \text{ LiAIH}_4 \rightarrow 2B_2H_6 + 3\text{LiF} + 3\text{AIF}_3$

In the laboratory, it is prepared by the oxidation of sodium borohydride with iodine.

$$2NaBH_4 + I_2 \rightarrow B_2H_6 + 2NaI + H_2$$

Diborane is prepared industrially by the reaction of BF_3 with sodium hydride.

2BF₃+6NaH 450 € 2B₂H₆+6NaF

Diborane is a colourless, highly toxic gas. It catches fire spontaneously on exposure to air. It burns in oxygen to form B_2O_3 and evolve large amount of heat.

 $B_2H_6 + 3O_2 \rightarrow B_2O_3 + 3H_2O: \Delta H = -1976 \text{ kJ/mol}$

It readily hydrolysed by water to give boric acid.

 $B_2H_6(g) + 6H_2O(1) \rightarrow B(OH)_3(aq) + 6H_2(g)$

Diborane react with ammonia to form B_2H_6 . 2NH₃ which on further heating gives **Borazine** ($B_3N_3H_6$) which is commonly known as inorganic benzene. Its structure is similar to benzene with alternate BH and NH groups.

$$3B_2H_6 + 6NH_3 \rightarrow 3 B_2H_6.2NH_3 \rightarrow 2 B_3N_3H_6 + 12H_2$$
